

Testing Plan

March 29, 2021

LOST EXPRES

Sponsor: Joe Llama

Mentor: Volodymyr Saruta

Team Lead: Brooke Caldwell

Architect: Jared Cox

Customer Communicator: Olivia Thoney

Release Manager: Ian McIlrath

Meeting Recorder: Austin Bacon

1

Table of Contents

1. Introduction 2

2. Unit Testing 4

2.1. Flask 4

2.2. Dash 8

2.3. User Class 9

2.4. PyMongo 10

2.5. FlaskMail 10

3. Integration Testing 11

3.1 Page Navigation 11

3.2 Graphing Functionality 11

3.3 Logging in and out 12

3.4 Administration Functionality 12

4. Usability Testing 13

5. Conclusion 16

2

1. Introduction

Since the discovery of the first exoplanet in the early 1990s, society has been infatuated

with the exploration of outer space with the goal of finding more and more planets outside of

Earth’s solar system. A vast number of these exoplanets have been discovered, but none have been

found to be Earth-like planets orbiting sun-like stars. Assistant astronomer Joe Llama and his team

at Lowell Observatory specialize in the study of exoplanets and they aim to find a planet that is

similar to Earth. Dr. Llama’s research has brought him to gather data on the Sun in order to better

analyze its radial velocity. By gathering data on the Sun, we may more precisely detect the

presence of an Earth-like planet around a foreign star. Yale University has developed the EXtreme

PREcision Spectrograph (EXPRES), which is a tool to measure such data. Lowell Observatory has

partnered with Yale University to use their EXPRES tool on the Lowell Observatory Solar

Telescope (LOST) to gather data on the Sun.

Dr. Llama is leading the team in gathering the data, and they gather data at a rate of 40GB

per day. This is because Dr. Llama is taking 5-minute exposures with EXPRES, for around 8 hours

a day. Now that Dr. Llama and his team have begun gathering and storing data, they have

encountered three areas in which their workflow is lacking. These areas are:

1. The ability to quickly and conveniently interact with data. Once the day is over, all data

collected from that day is store in FITS files on the Lowell servers. There is currently no

way to access visualization of the collected data without manually parsing through large

FITS files and rendering graphs individually.

2. The ability to share select data with the public. As a public institution, it is important to

Lowell Observatory that the public be able to learn about research that the Observatory is

involved in. Currently, data from LOST is not being shared publicly.

3. The ability to share all day with researchers at other institutions. Along with the

public, other research institutions should have full access to LOST data in order to facilitate

research.

In order to provide Dr. Llama and his team with interactive data visualizations and a

platform for sharing data, LOST EXPRES has developed a web application that will provide a

clean and intuitive user interface for both researchers and public users to view and interact with

data. Key features of the application include:

3

1. A graphing page complete with interactive capabilities. The application allows users to

view a radial velocity graph and dive further into the data by viewing a one-dimensional

and two-dimensional spectrum for each radial velocity. Each graph allows users to zoom

in and out, adjust the axis, adjust the density of data, and record pictures of the graph. In

addition, two-dimensional spectrum graphs have the option to display one or more orders.

2. Role-based permissions. Anyone from the public is able to view and interact with a

limited amount of data. Researchers looking for a larger amount of data are able to request

researcher-level access with a valid email address and associated institution. The sole

administrator can approve researcher requests.

3. An administrator dashboard for controlling information. The sole administrator is able

to determine the range of data that is currently available to the public. The public is not

able to see the entire data set collected by Lowell, only a portion of the data.

Other features include a glossary page for looking up important definitions and a news

page containing current stories and information about Lowell Observatory. Both pages will be

editable by the administrator. In addition, data is not only available visually, but also available to

download from the application.

To ensure our application meets all the requirements of Dr. Llama and functions correctly,

efficiently, and in a user-intuitive manner, our team has laid out a software testing plan. Software

testing introduces a series of tests that examine the integrity, quality, and functionality of a piece

of software. The purpose of testing is to uncover any unwanted behavior or expose shortcomings

in the functionality of a product.

LOST EXPRES is implementing unit, integration, and usability tests. Unit tests will test

individual sections of our code to ensure each section executes as it is intended. We will be writing

unit tests to ensure navigation through our application is correct, that the application reads from

the database correctly, data is plotted correctly, and users can properly interact with the application.

Integration tests will examine how well these separate components work together to produce the

desired functionality. For our application, this will include testing the experience of using the

application as a whole and navigating between different features. Usability testing will assess how

user-friendly our application is, by asking people unfamiliar with our project to navigate our

application and complete a variety of tasks. This will simulate how end users will interact with our

4

application and will reveal any issues with the interface and other software components. Now that

we have introduced our product and given an overview of the tests, we plan on executing, we can

look more closely at the details for unit, integration, and usability testing.

2. Unit Testing

Unit testing is a type of software testing where code is sectioned into individual

components, or "units" to be individually validated. The purpose of these tests is to verify that each

piece of code runs as expected; doing this on a small scale should make a difference on a large

scale. The thought process is that if each unit of a project is tested to check it works, you can be

more assured that the code will work how you expect it to, and to make it more clear about where

future bugs appear from in the code.

 One of the important things to define for unit testing is what constitutes a “unit,” and how

it changes over different areas of the project; this will affect how we write our tests and where.

The way we will break up our code is first by library, and then by unique component, as most of

the libraries used are extensions of Flask. Our file structure uses a factory pattern to apply behavior

to the underlying Flask server, meaning the code for different libraries are in separate sections.

2.1. Flask

Flask acts as the main server functionality, and uses several global variables that are

necessary to test. For Flask unit testing, we will be using a combination of the Pytest library, as

well as the Selenium library to provide a webdriver. For each of the files in the file structure, we

will have a separate file with the “test_” prefix to run that file.

5

2.1.1. Routing

Url directing in Flask is handled by initializing functions specifying the path of the server

they route for. Routes can parse types of routes to pass as parameters into the function.

Unit Description Bounds Input Example Exp. Response

Static Pages Static pages are rendered

from templates and should

not throw errors from

inside Jinja.

-A valid path:

slashes and

alphanumeric

characters

-Request: / -The index page is

loaded correctly with all

necessary libraries

included.

Dynamic

Pages

Dynamic pages require

the server to send a

request to the database

before the page is

rendered to the user.

-A valid path:

slashes and

alphanumeric

characters

-Request: /glossary -The glossary page

renders with records

loaded from the database

Error

Handling

If a route is invalid or

forbidden to outside

accounts, the server will

return an error page.

-An invalid path

-A valid path

without a valid

login

-Request: /invalid -The server returns the

appropriate error page

for the error being

thrown.

6

2.1.2. Post Requests

Handled inside route functions, types of requests can be filtered and parsed with Flask’s

request variable to execute other code. Pytest and Flask’s test client will provide dummy request

contexts.

Unit Description Bounds Input Example Exp. Response

Sign In The login page will

attempt to authenticate

the email and password

with the database.

-A valid email

-A valid password:

Alphanumeric

characters

-Email:

abc12@nau.edu

-Password:

3xamp1e

-The server initializes the

user class and runs it

against the database for a

singular match. Not

finding it will result in a

failed login attempt.

Register The register page sends

received post requests

to the administrator’s

email for verification.

-A valid email

-First name:

Characters, <20

long

-Last name:

Characters <20

long

-Institution:

Characters

-Email:

abc12@nau.edu

-First name:

Geoff

-Last name:

Jefferys

-Institution: NAU

-The admin receives an

email containing the

applicant’s input

information, with a link

to confirm their account.

Forgot

Password

The forgot password

page sends an email to

a user if their email is

registered to the server.

-A valid email -Email:

abc12@nau.edu

-If the email exists in the

database, it will send an

option to reset the

password to that email.

Add to

Glossary

The “add terms” page

adds definition records

to the database to be

rendered by the

glossary page.

-Term: Unicode

characters

-Definition:

Unicode characters

-Term: Soup

-Definition: A

consumable liquid

-The server adds a record

for soup in the glossary

collection.

-The request will fail if

not authenticated as the

administrator.

Add Article The request adds a new

article to the database

to be rendered in the

news section.

-Title: Unicode

characters

-Subtitle: Unicode

characters

-Author: Unicode

characters

-Content:

Unicode characters

-Title: Example

-Subtitle: subtitle

-Author: Geoff

Jefferys

-Content: This is a

sentence, but it

could be a page

-If the current user is

admin, the server adds a

new record to the article

collection.

7

Change Email The request updates the

user’s email, which

will be verified by

sending an email to

both old and new

records

-Old email:

alphanumeric

characters

-New email:

alphanumeric

characters

-Old email:

zyx90@nau.edu

-New email:

abc12@nau.edu

-If the old email belongs

to the current user and

exists once in the

database, but the new

email doesn’t exist,

update the account’s

record in the database.

Change

Institution

The request updates the

user’s institution. This

does not need to be

verified

-Institution:

Unicode characters

-Institution: NAU -The server will update

the institution record of

the current user if

authenticated

2.1.3. Jinja

Jinja uses Flask’s request context and renders variables to construct web pages. We will be

using Pytest and Flask’s test client to verify the output.

Unit Description Bounds Input Example Exp. Response

Base Page Jinja templates can extend

each other to replace/add

content. Every HTML

page extends the base

page in some way.

-Request: A

valid path on

the server

-Request: /account -The base page will be

rendered with content on

top of it; all valid pages

will have a navbar.

Macro

Functions

Jinja allows functions to

be defined to automate

repeatable elements

-Navbar

Elements: list of

ordered pairs

with path and

navbar display.

-Navbar Elements:

[(“/admin”,

“Admin”)]

-The base page adds an

“Admin” button to the

navbar.

8

2.2. Dash

Dash unit testing relies on Pytest to check expected outputs, and Selenium to interact with

control elements. The tests revolve around expected outputs of client and server-side callbacks.

The located file will be named with the “test_” prefix.

Unit Description Bounds Input Example Exp. Response

Layout Render Dash requires elements

to be defined in python,

so we must test that it

renders the correct

HTML.

-Layout: Python

rendered HTML

elements

-Layout:

html.Div(classNam

e=”class,

children=[“hello

world”])

The Dash renderer will

return

<div class=class>hello

world</div>

Choose

Spectrum

Test that clicking a point

of the graph returns its

filename.

-RV plot: an

HTML element

-Click data:

JSON

information

-RV plot: <div

id=’rv-plot’/>

-Click

Data:{index:0,

filename”stuff00”}

The server returns an

existing filename to the

page.

Choose Date

Range

Test date selection sends

an ordered pair of dates

within range and zooms

in the plot.

-RV plot: an

HTML element

-Max date: date

of the latest entry

-Min date: date of

first entry

-RV plot: <div

id=’rv-plot’/>

-Max date:

29/3/2021

-Min date:

1/1/1970

Zooms in RV plot to

selected date range

Render

Spectrum

Test correct interaction

with the graph, including

switch and range inputs.

-Spec Data: an

HTML element

-Resolution:

Ratio, 1:1 to

200:1

-2D: boolean

-Orders: ordered

pair of ints, 0-85

-Log: boolean

-Spec data: <div

id=’spec-plot’/>

-Resolution: 50:1

-2D: True

-Orders: 40-45

-Log: False

Graph renders with

selected orders in

multiple colors, with a

reduced resolution to

affect its speed

9

2.3. User Class

User class unit testing will be using the same technologies as testing Flask, that being Pytest

and Selenium libraries. This testing in this section will revolve around user permissions and login

capabilities. The same file structure will be used as well, by using the “test_” prefix before the

testing files.

Unit Description Bounds Input Example Exp. Response

Sign In The user class must be

able to authenticate the

input user and update the

Flask session variable.

-Email: A valid

email with one

record in the

database

-Password hash:

Unicode

characters

-Email:

abc12@nau.edu

-Password:

3xamp1e

The user class is

authenticated against the

database, and the session

variable is updated to

match.

Sign Out The user class must be

able to sign out if it is

already authenticated. A

user must be logged in to

log out.

-None -None The user class is logged

out, and the session

variable is updated to

match.

Roles The user class has

multiple roles, so both

the researcher and admin

roles must be tested

-Email: A valid

email of a

specific role,

repeated for

other roles

-Email:

abc12@nau.edu

The different roles have

access to their respective

tasks, these tasks operate

as required.

Register The user has the ability

to change roles through

registration to have more

access within the site.

-Email: A valid

email with no

current record in

the database.

-Institution:

Unicode

characters

-Name: Unicode

characters

-Email:

abc12@nau.edu

-Institution: NAU

- Name: John

Smith

The user class

information is sent to an

email accessed by the

administrator of the site

awaiting approval.

Generate

Password

A random password is

generated and referenced

to the database.

-None -None A password is generated

and added to the user

class database entry.

10

2.4. PyMongo

In order to test interaction with our MongoDB database, we use Pytest by itself to verify

success. The same file structure will be used as well, by using the “test_” prefix before the testing

files.

Unit Description Bounds Input Example Exp. Response

Connection Test if the Python

interface has connected to

the MongoDB database.

-URI: The

identifier for the

MongoDB

database

holding the

current data for

the website.

-URI:

‘mongodb+srv://N

ame:name@someL

ocation’

A valid connection to the

identified database.

2.5. Flask Mail

The server requires it to be capable of sending emails to the administrator. Flask mail will

use Pytest to test authentication; the same file structure will be used as well, by using the “test_”

prefix before the testing files.

Unit Description Bounds Input Example Exp. Response

Send The mail server

authenticates

messages at runtime,

sending registrations

to the admin’s

personal email.

-Mail server: A

valid email address

-Port: Integer

-Username: A valid

email address

-Password:

Alphanumeric

characters

-Recipient: A valid

email address

-Mail server:

test@gmail.com

-Port:200

-Username:

lost@gmail.com

-Password:

eggsample

The server sends an

email with the

configured credentials,

and the email is received

by the chosen email.

11

3. Integration Testing

 Integration testing is used to determine that all functionalities in your application are

working properly and also connected to the correct places. The goal of integration is to ensure that

the software matches the schema that was created during the design phase of development.

To perform this type of testing, modules that are linked to one another will be examined in

order to ensure that everything in our program is interacting with each other correctly. The modules

that integration testing needs to be used on for this project include page navigation, graphing

functionality, logging in and out for users, and administration functionality.

3.1 Page Navigation

 To test page navigation, the tester will simply need to double-check that we are properly

routing between all of our HTML pages. Our tester will need to be able to access the home, news,

data, login, logout, account, register, admin, and glossary pages from the navigation bar at the top

of each webpage. Each label in the navigation bar should bring the user to the corresponding

webpage.

 There are a few other places where navigation can take place between two pages without

the navigation bar. This happens when an administrator is updating the glossary or news sections,

or when a user is logging in or out. These integration tests will be covered more thoroughly in

Login and Admin integration tests.

 The purpose of the integration test on this module is to ensure that all directories on the

website route the user to the intended destination.

3.2 Graphing Functionality

 To test graphing functionality, the tester will be required to manipulate the graph data in

various ways. This includes zooming in, zooming out, changing from 1d spectrum to 2d spectrum,

12

setting resolution, selecting orders, and resetting the axes of the graph. The tester will know that

the graphing functions are properly integrated when every graph can be correctly displayed and

manipulated, as this will demonstrate that the graphing page and database are communicating with

each other.

3.3 Logging in and out

 To test logging in and out, a user will attempt logging in as both a researcher and

administrator. When logged in as a researcher, the user will be able to see graphing sections that

were not set to be viewed publicly. When logged in as an administrator, the user will be able to

see everything a researcher can access, as well as additional administrator privileges. To ensure

that logging out is properly integrated into the system, the user will logout. After that, they will try

to access researcher and administrator only data, which they should be prevented from doing since

the user is now logged out.

 The goal of testing this module is twofold. The first thing to test is that the users we are

logging in as are actually located on the database, in order to make sure that this module is

integrated with it. The second thing to test is that our researcher user has researcher privileges, and

our administrator user has administrator privileges. If this is the case, then our login module is

properly configured to pull specific data about the logged-in user from the database, ensuring

integration.

3.4 Administration Functionality

 To test administration functionality, the user will first need to be logged in by using an

administrator username. The user can then attempt to add items to the glossary, news articles to

the news section, and designate which data is set to private or public.

13

 Testing the integration for glossary and news pages will be similar for each page. First, the

user will access the admin webpage they are performing the integration test on. Next, the tester

will try to add an item to the glossary/news page. After that, the tester will go to the webpage that

lists out the glossary/webpage to check and see if the item they just added is there. If the item is

present, then the test passes.

 To test the integration for changing the accessibility of data, the tester will use the admin

page and attempt to set the graphing data of a specific day from private to public. After this change

has been made, the tester will log out, navigate to the graphing page, and check to see if the data

that was just set to public is visible.

4. Usability Testing

Usability testing implements the use of end-users with software testing. In this portion,

there won’t be any kind of programming or code testing. Instead, we will be using ordinary people

who will represent the general public. The main goal of this section is to attain feedback on the

usability of our product. This will include the user experience within the UI and will help us to

refine and test the ease of use of the LOST EXPRES web application. This will not only help to

improve the usability of our web application but will also help to detect and fix bugs that weren’t

already discovered by unit testing and integration testing. Usability testing is especially important

for our purposes because a large portion of our web application is used by the common public.

 In order to effectively test our application, we need some criteria for the people used in

testing. The plan is for members of the group to gather family members, friends, and other people

willing to test the web application, and to simply have them use the web application. For the most

part, members of LOST EXPRES will have to host the web application as well as the server to run

the application, so most testing will be done locally. One of the main criteria for selecting testers

will be that they have little or no exposure to the web application. The best way to attain fair,

accurate feedback is to get it from someone who has not had the opportunity to familiarize

14

themselves with the web application, because they won’t have any prior experience or opinions on

the web application.

 For each testing session, we will provide the participant with a set of directions that will

vaguely explain to the participant what they should be doing. This will be written carefully as to

not give the participant any direction. The site itself should be very clear and explain how to

accomplish the tasks through the web application’s design. We will test participants one at a time,

as the site should be easily navigated and the directions given to participants should be easy to

perform by one person on their own. Most, if not all, tests will be done in person, because of the

complexity of running the code to host the server, so all participant findings can be easily observed

and documented.

 In order to get accurate feedback from participants, they will test the web application in 3

separate steps.

1. Testing for the general public, using the web application as a public user with no

privileges, and only having access to admin deemed public information

2. Testing for researcher, using the web application with limited privileges and access

to all information

3. Testing for administrator, using the web application with full privileges and access to

all information in the database

User Instructions:

Hello, thank you for participating in the LOST EXPRES application testing process.

The following instructions are provided in order for our team to properly collect accurate data.

Please follow the instructions to the best of your ability and if you cannot perform an activity, skip

it and continue on with the test.

Terms to know:

Public User: a user that is part of the general public, this role is designed for an ordinary everyday

visitor of the website, only has access to public information.

Researcher: a user who has requested researcher rights, and has been accepted by administrators

to be recognized as a researcher, has access to public information as well as private information.

Administrator: a user who has been designated as an administrator has access to public

information as well as private information, and also has the ability to add, delete, and modify the

web application’s content. An administrator can also accept/reject researcher requests.

15

Knowing this information, we ask that you place yourself in the position and mindset of each role

while completing each task that pertains to the role. Throughout testing the web application, take

mental notes of any aesthetic or design implementations that you feel might improve the

application.

Public User:

● Navigate to the News page, and open up a news article

● Navigate to the Data page, scroll down to the bottom, notice there is no graph displayed at

the bottom, scroll up and select a point on the top graph, now scroll down to notice the

selected point being graphed

● Zoom in, zoom out and reset a graph on the data page

● Navigate to the glossary page

Researcher User:

● To begin, navigate to the login page

● Check to see if an incorrect log in will create an error

● Login with username: <username for premade account> and password: <password for

premade account>

● Test all of the actions listed in the “Public User” section

● Log out of Researcher account

Administrator User:

● To begin, navigate to the login page

● Login with username: <username for premade account> and password: <password for

premade account>

● Test all of the actions listed in the “Public User” section

● Notice a new selection on the navigation bar, titled admin. Select this and you will notice

fields for posting news articles, create a new news article, and check if it was added to the

news page

● In the admin controls, you will notice a new sidebar to the left of the screen, add a new

glossary term

16

5. Conclusion

The design of the LOST web application has been carefully thought out to ensure the most

efficient use of resources and the fastest user experience. By using new and modern frameworks,

Lowell will have a state-of-the-art data visualization tool for analyzing solar data. LOST

EXPRES’s web application will deliver an interactive experience to multiple types of users. Public

users will gain insight into Lowell Observatory’s research, satisfying their mission of public

education and outreach. Meanwhile, research users, approved by a Lowell admin, will be able to

view all of LOST’s data, advancing space exploration and scientific collaboration. The sole admin

user, our client Dr. Llama, will have the satisfaction of sharing his research findings in a modern

way while maintaining control over the application. Overall, the design of the LOST web

application ensures that Dr. Llama will receive an elegant solution to his current problem: the lack

of any simple solar data visualization. The technologies we chose will all contribute to a simple,

yet pleasing application that is reliable and scalable to the future of Lowell Observatory.

Through this document, we have outlined our process for testing our software and have

provided detailed examples of tests that will be implemented. All our tests can be classified into

three types: unit testing, integration testing, and usability testing. By using a combination of these

three types of tests, we will be able to discover any unexpected problems, incorrect behavior, or

poor design in our application. Unit testing will ensure that each individual piece of code functions

as it is intended. With each piece of code working independently, we will conduct implementation

testing to verify that all components work together and communicate properly. Last, our usability

tests will provide our team with feedback from real end-users. Specifically, we are looking for

suggestions regarding the user interface and how intuitive it is to navigate our application. This

will include feedback from all three types of users, public, researcher, and admin. Most

importantly, the usability of the interactive graphs will be tested.

Using results from our tests, we will update our application by fixing any found bugs and

errors, and improving user-interface components. As a team, we are confident that our testing plan

will uncover any room for improvement within our application. We are eager to enhance the

functionality of the site in order to deliver the most useful and powerful data visualization tool to

Dr. Llama.

